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Department of Physics, University of Canterbury, Christchurch, New Zealand 

Received 23 October 1980, in final form 5 January 1981 

Abstract. Practical algorithms are given for calculating all possible Kronecker products 
involving the spin and ordinary representations of the alternating group A, and for the 
resolution of Kronecker squares into their symmetric and antisymmetric parts. The 
representations of A,, are classified as to their orthogonal, symplectic or complex charac- 
ters. Branching rules for S,,JA, and AnJA,,-l are given. Throughout, the emphasis is on 
obtaining results that obviate the need for explicit character tables and on presenting the 
results in an n -independent manner. 

1. Introduction 

We have recently indicated how the branching rules, Kronecker products and 
plethysms involving the spin representations of the symmetric group S, may be 
developed in an essentially n-independent manner and without the explicit use of 
character tables (Luan and Wybourne 1981, referred to as I). In this paper we extend 
the results of I to the ordinary and spin representations of the alternating group A,, the 
group of even permutations. The group A, is of order n !/2 and is a subgroup of index 2 
of s,. 

From a mathematical viewpoint, the A,, groups assume a special significance as a 
consequence of the result that for n # 4 the groups A, are necessarily simple (Leder- 
mann 1976). Thus the groups A, form a great class of finite simple groups. In physics 
the isomorphisms C J - A ~ ,  T-A4 and I-A5 are well known in solid state and 
molecular physics (cf Lax 1974). 

The ordinary irreducible representations (irreps) of A, were studied long ago 
(Frobenius 1901), and more recently from the point of view of induced representations 
(Puttaswamaiah and Robinson 1964). A partial study of the projective irreps of A, was 
made by Schur (191 1). Apart from a few particular cases, very little attention seems to 
have been devoted to the study of the spin representations of A,. 

In this paper we shall first review some of the relevant aspects of the symmetric and 
alternating groups. The reduced notation developed in I for S, is extended to A,, 
leading to an essentially n-independent treatment of the properties of the irreps of A,. 
Branching rules for &&A, are developed. The difference characters for the irreps of A, 
are established, and used to establish a series of algorithms for evaluating Kronecker 
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products and plethysms of the spin and ordinary irreps of A,. In the concluding section 
the systematic classification of the irreps of A, is given. Throughout we follow closely 
the notations established in I. 

2. The groups S,, and A,, 

The cycle structure of a given class of conjugate permutations in S, may be designated 
as 

(1” i2”2 . ,  , n”.) (1) 

where v1 is the number of 1-cycles etc and 

1 v l + 2 v 2 + .  . . +nvn = n .  (2) 

Cycles structures involving an even number of even length cycles correspond to even 
permutations, while all other permutations are odd. To each solution of (2) for positive 
integers there corresponds a class in S,, (cf Hamermesh 1962). 

For later convenience we shall adopt the convention of listing the cycle structures in 
order of their decreasing length and omit all cycles with exponents vL = 0. Parentheses 
will be used to enclose the cycle sequences. Thus in S4 we designate the classes as (14), 
(2’), (31), (21’), (4) with the first three classes involving even permutations only. 

The classes of S, are all ambivalent, i.e. every class contains the inverses of its 
elements (Sharp etal 1975). As a consequence all the ordinary irreps of S, are real and 
S, is said to be an ambivalent group. 

The classes of A,, involve only even permutations. All classes of S,, involving only 
even permutations remain as classes of A,,, with the important exception of those classes 
for which the even permutations involve only odd cycles of unequal length. In those 
cases the class splits into two classes of conjugate elements of A,,, each with half the 
number of elements (Frobenius 1901, Boerner 1970). The splitting classes of A,, will be 
designated as (p1p2 .  . . pk)+ and (PIP’.. . Pk)- where the p z  apd are all odd and 

p 1 > p 2 >  . . .  > p k > o  (3) 

P l + P Z f . .  . + P k = n .  (4) 

with 

Thus in A4 we have the classes (14), (2’), (31)+, (31)-. 
It is well known from number theory (cf Hardy and Wright 1954) that the number of 

partitions of n into odd and unequal parts is equal to the number of its self-associated 
partitions. Thus with every self-associated partition ( A l h 2 ,  , .) we have the partition 
(p1p2.  . .) where 

p ,  = 2h, -2 i+  1 ( 5 )  

and we have the constraints of (3) and (4). The number of self-associated partitions for 
given n is readily seen to be 

where p m [ k ]  is the number of partitions of k into at most m parts and the summation is 
over m = 2,4,  . . . for n even and m = 1,3 ,  . . . for n odd. 
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The splitting classes of A, are ambivalent for n = 2,5,6,10 and 14-all other A, are 
non-ambivalent (Sharp et a1 1975). 

The notion of an irreducible projective representation (IPR) plays an important role 
in the theory of the spin representations of S, and A,. We now consider a few of the 
relevant properties of IPRS (cf Schur 1911, Curtis and Reiner 1962, Dornhoff 1971). 

Let G be a finite group, k a field and V a finite-dimensional k-vector space. A 
projective representation of G on V is a mapping T : G + G L ( V )  such that for all 
X , Y E G  

T(X)T(Y)  = a b ,  Y ) T ( X Y ) ,  a b ,  Y ) E k .  (7) 

The function a : G x G + k is called a factor set of T and T an IPR if V has no proper 
subspace invariant under all T ( x ) ,  x E G. Furthermore 

a b ,  Y ) ~ ( x Y , z ) = ~ ( x , Y z ) ~ ( Y , 2 )  for all x,  y ,  z E G. (8) 
Two factor sets a and p of G are termed equivalent if there is a function y : G + k such 
that 

a ( x ,  Y )  = P ( x ,  Y ) r (x ) r (Y ) r (XY) - l  for all x,  y ,  z E G. (9) 
The set H2(G,  k )  of all equivalence classes under (9), with multiplication {a } {p }  = {ap}  
well defined, forms an Abelian group of equivalence classes of the factor sets and is 
known as the Schur multiplier of G over k. For S, we have (Davies and Morris 1974) 

H2(S, ,  @*) = c, = { ( I ) }  ( n  2 4 )  (10) 
where @* denotes the non-zero complex numbers and if r = 1, the irrep T of S, will be 
called an ordinary irrep while if r = -1, T will be called an IRP or spin irrep of S,. 

The centraliser C ( x )  of an element x E G is the collection of elements s E G such that 
sxs-l= x. If a is a factor set of G, an element x E G will be termed an a -regular element 
if 

a ( x ,  s) = a(s ,  x )  (11) 

for all s in the centraliser of x in G. If x is a-regular then every element which is 
conjugate to x in G is a -regular, and hence we may speak of an a -regular class. 

The number of distinct inequivalent IPRS of G with the factor set a is equal to the 
number of a-regular classes of G, and 

C n ? = g  
I 

where ni are the dimensions of the inequivalent IPRS and g is the order of G. 
For S, the a-regular classes fall into two categories: (1) even permutation classes 

containing only cycles of odd order; (2) odd permutation classes containing cycles of 
unequal orders. Thus for s6 we have the six a -regular classes 

(I6), (51), (37, (313) even, 

(6), (321) odd. 

In the case of A, the even a -regular classes of S, remain as a -regular classes of A,, 
though among them there may be splitting classes. In addition, there are the even 
classes involving cycles of unequal orders. These latter classes are a -irregular in S, but 
a-regular in A,. Thus for A6 we have six a-regular classes 

(1% (51)+, (51)-, (32), (313), (42) 
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where the a-regular (51) class of s6 has split and the a-irregular (42) class of s6 is 
a-regular in A6. 

The ordinary irreps of S, ,  are labelled by ordered partitions [ A ]  of n while the spin 
irreps are labelled by ordered partitions [A]‘ of n into unequal parts. The ordinary 
irreps of S ,  are said to be self-associated if [A]  E [i] (where (i) is the partition conjugate 
to ( A ) )  and will be designated as [A]’. For all other ordinary irreps the pairs [ A ]  and [XI 
are associated and ( A )  will be taken to be the partition of greatest weight of ( A )  and (i). 
The spin irreps are self-associated if iz - k is even (k being the number of parts of [A]’) 
and will be designated as [A]’’-all other spin irreps of S ,  form associated pairs [A]‘ and 

Under S ,  A,, the pair of associated irreps of S ,  become equivalent irreps of A,,, 
while self-associated irreps of S, split into two conjugate irreps of A, of the same 
degree (Frobenius 1901, Read 1977). As a consequence, we shall label the irreps of A,, 
by partitions of n. For the ordinary irreps, if [A]  # [X] then we use only the partition of 
greatest weight, while if [ A ] =  [i] we have two conjugate irreps designated as [A], and 
[A]-. The spin irreps of A, are labelled by partitions [i]’ of n into unequal parts. If 
n - m is even there are two conjugate irreps [A]: and LA]’. 

Following I, we shall frequently use [A]’ = [ A ] +  [ A ]  etc for designating pairs of 
associated irreps of S, .  

[XI’. 

3. S, 4 A, branching rules and reduced notation 

In terms of the notation just outlined we may write the S, LA, branching rules as 
(Frobenius 1901, Schur 1911) 

[AI’’ J 2 [ A  1’ when n - k odd. (14b) 

A reduced notation for labelling the irreps of S ,  in an n-independent manner was 
developed in I. The ordinary irreps of S ,  usually labelled by the n -dependent symbol 

[ A ] ~ [ n - n z , p 1 , p 2 , . . . , p L , 1 ,  

with ( p )  being a partition of m were labelled by the n-independent symbol ( p ) =  
( p 1 p 2 . .  . p,). The spin irreps of S,, were labelled in a similar manner, with a prime being 
added to distinguish them from ordinary irreps of S,,. This reduced notation may be 
carried over to A,, to give the S, 1 A,, branching rules in an essentially n -independent 
form as 

S n  1 An, 
(p) ’  1 ( p )  + + (P ) -  when ( p )  (C), (15a) 

(P )’ 12(F) when ( P )  # (C), (15b)  

( p ) ” ~ ( p ) ~ + ( p ) ’ -  when n -r  odd ( 1 6 a )  

(wL)’TJ %)‘ when n - r even. (16b)  
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In using the above results it is essential to remember that the self-association of irreps is 
an n -,dependent property. 

4. The A, &A,-l branching rules 

The branching rules for S ,  .1 S,-1 were developed in I. Knowing these, together with the 
S, LA, rules just outlined, leads immediately to the branching rules for A, 1 A,-1. For 
the ordinary irreps of A, we have in the reduced notation 

The terms on the right, ( p ) ,  are to be taken as ( p ) ,  + ( p ) -  if ( p )  = (6). 
Thus we have 

( l z ) w ) + ( l ) ,  

[3 12]*1 &217 + [3 11) = [31] 

[4 17.1 [3 1 + [4 11 = [3 1 2]+ + [3 17- + [4 11. 

leading in n = 5 to 

and in n = 6  to 

Likewise we find for the spin irreps of A,, under A, 1 A,-l for n .- r ezlen 

(18a) I t  2(P)’1((PL)’tf2(P/l)’t-6A,,l(Pl, * * , PI-1) 

while for n - r odd 

( ~ ) ~ . 1 3 ( ( ~ ) ” + ( ~ / 1 ) ’ ~ 6 ~ , , i ( ~ ~ ,  - a , P ~ - I ) ~ - ~ A , , I ( P I ,  . . , P ~ - - I ) & )  (186) 

where we use the ’ to indicate self-associated spin irreps of S ,  and restrict to A, using 
(16a) and (16b), i.e. 

(P)’+ = (P >‘ + G)’ or (CL)’  = (L). (19) 

Thus under A, JA,-1 we have for n - r even 

2(421)’.1 2(421)It +2(321)”+ (42)’’ 

and hence for A13 A12 

[6421]’.1 [5421]: +[5421]’+[6321]: +[6321]:+[642]’, 

while for n - r odd 

(421),&$((421)’t+(321)’’+(42)t‘+(42)L -(42)&) 

and hence for A12.1A11 

[5421]:J;(2[5321]’ + 2[542]:) = [5321]’ +[542]:. 
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5. Difference characters for A, 

The simple characters of S, which are not self-associated are also simple characters of 
A,. Each self-associated character of S ,  is the sum of two simple characters of A,. For 
the ordinary irreps, the characters of A, are found by taking half the value of the 
characteristics for S,, except for the splitting classes ( p ) +  = (p1p2 . . . p k ) *  where p I  = 
2Ai -2i + 1 (cf equations (3)-(5)). In this case the characteristics of the splitting classes 
in A, are given by (Frobenius 1901) 

( P I P 2  . . * P k ) 1 / 2 1  ( 2 0 a )  

(P1P2 * * Pk)1’21.  @Ob) 

x;^,;; = L  2 [ ( -  l ) ( n - k ) / 2 * i ( n - k ) / 2  

and 
xi^’- = $[( - 1) ( n - k ) / Z F i ( n - k ) / 2  

PI* 

If the difference character is defined as (cf Read 1977) 

(21) [ A I ”  - [ A I ,  - [ A I L  
X ( P )  -Xb) X ( P )  

then it follows from (17a) and (17b) that 

if ( p )  = ( p ) +  and vanishes for all other classes. 
In the case of the spin irreps of S,, those irreps labelled by partitions ( A )  into k 

unequal odd parts, with n - k even, are self-associated and split into two conjugate 
irreps [A]: and [A]’ of A,. Here we find for the splitting classes ( A ) +  

( A l A 2 .  . . hk)’”] ( 2 3 a )  x;,;i = $ [ ( - l ) ( k - i t ( m o d  2 ) ) / 2  i ( n - - k ) / 2  

and 

( A l A z  . . . Ak)’l2]  (236) [ A I L  - $ [ ( - l ) ( k - n ( m o d  2 ) ) / 2  ,-i(n-k)/2 
X(AL - 

while for the class ( A )  where all parts of ( A )  are unequal and one or more even 

(h lh2 .  . . hk)‘l2/2 ( 2 5 )  [AI: = *i (n-m)/2  
X(A) 

In all other classes the spin characteristics for the conjugate irreps [A]: and [A]’ of A, 
are simply half of their corresponding values in S,, and the difference characteristics 
vanish. 

It follows from the above that the associated characters of S, decompose into real 
characters of A,, while the self-associated characters of S, decompose into a pair of real 
conjugate characters of A, if n - k = O(mod 4), otherwise we obtain a pair of complex 
characters of A,. 

By way of an example of the notation developed here we have given the spin 
characteristics for the a-regular classes of As in table 1. 
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Table 1. Spin characteristics for the a-regular classes of As. 

Class (1’) (31’) (513) (3’1’) (71)+ (71)- (62) (531, (53)- 

Order 1 112 1344 1120 2880 2880 3360 1344 1344 
~~ 

8 4 2 2 1 -  
24 6 1 o f(-I-iv‘T) 
24 6 1 0 $(-1+d7) 
56 4 -1 -1 0 
56 4 -1 -1 0 
56 -2 -1 2 0 
56 -2 -1 2 0 
64 -4 1 -2 1 
48 -6 2 0 -1 

1 
4 (- 1 + i Jz) 
i(-l-i47) 

0 
0 
0 
0 
1 

-1 

0 1 
0 -1 
0 -1 

-iJj 1 
+id3 1 

o $ ( - l + i J i j )  
0 $(-1-iJ15) 
0 -1 
0 1 

1 
-1 
-1 

1 
1 
1 

i(- 1 - i JB) 
$(- 1 + i J l5 )  

-1 
1 

6. Kronecker products in A, 

The analysis of the Kronecker products of irreps of A,, given here draws heavily upon 
the methods developed in I, but with a rather more extensive use of the properties of 
difference characters (Littlewood 1950, Wybourne 1970). Our results are summarised 
in seven algorithms which cover all possible cases. Most of the evaluations are made by 
first resolving a Kronecker product in S ,  and then using the S A, branching rules 
together with the properties of the difference characters to assign the A, irreps to the 
appropriate A, product. 

The first algorithm covers all cases that do not involve members of a conjugate pair 
of A,, irreps. 

Algorithm 1. 
(1) To resolve ( ~ ) ( v ) ,  ( ~ ) ( v ) ’  or ( ~ ) ’ ( v ) ’  make the replacements 

(P ) (V ) - )  ( w ) ( v )  

( I * ) ( V ) ‘  + w(V)’ f /2 ,  

(2) In each case the right-hand side involves S ,  Kronecker products-resolve these 

(3) Restrict the resulting S ,  irreps to those of A, using (15a)-(16b). 
using the algorithms given in 1. 

The second algorithm resolves the products ( ~ ) ( v ) *  for ordinary irreps of A,. 

Algorithm 2. 
(1) Evaluate ( ~ ) ( v )  for S ,  giving 

( P ) ( V )  = &”(P)  

and restrict the right-hand side to A,, using (15a) and (15b). 
(2) Divide the coefficients associated with every term found in (1) by two. The 

integral part of the resulting coefficients is the number of times its corresponding irrep 
occurs in ( g ) ( v ) +  and in ( P ) ( V ) - .  If there is no residue the resolution is complete. 
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(3) The only possible residue will be a term 

(V)+ = (v)+ + (v)-. 
If the characteristic xi:; = +1 then (v), is assigned to ( p ) ( v ) +  and (v)- to ( g ) ( v ) - ,  while 
if = -1 the opposite assignment is made. 

The third algorithm treats the case (p)+(v) ’ .  

Algorithm 3. 
(1) Evaluate (p) (v) ”  for S ,  using algorithm 2 of I to give 

(/&)‘+ = SL(P)’+ 

and restrict the above results to A, using ( 1 6 a )  and (16b)  to give ( ( p ) + + ( p ) - ) ( v ) ’ =  

(2) Divide the coefficients associated with every term found in ( 1 )  by two. The 
integral part of the resulting coefficients is the number of times its corresponding irrep 
occurs in (p)+(v)’  and (p).-(v)’. If there is no residue the resolution is complete. 

~g”,(P)‘+- 

(3) The only possible residue will be a term 

(d’+ = ( P ) :  + (P)i. 
If the characteristic ,y&y = +1 then ( p ) :  is assigned to (p)+(v) ‘  and ( p ) ’  to (p) - (v) ‘ ,  
while if xjY,\’ = -1 the opposite assignment is made. 

The fourth algorithm covers the case (p ) ( v ) : .  

Algorithm 4.  
(1) Evaluate (g>(v)’+ for S ,  using algorithm 2 of I to give 

and restrict the right-hand side to A, using ( 1 6 a )  and (16h) .  
(2) Divide the coefficients associated with every term found in (1) by two. The 

integral part of the resulting coefficients is the number of times its corresponding irrep 
occurs in (p ) (v ) :  and in (p ) (v )L .  If there is no residue the resolution is complete. 

(3) The only possible residue will be a term 

(v)” = (v):+(v)’. 

If the characteristicxi:: = 1 then (v): is assigned to ( p ) ( v ) :  and (v)Yto ( p ) ( v ) I ,  while if 
xi:,) = -1 the opposite assignment is made. 

The next three algorithms require the use of difference characters. Let 

(F  = (P)+ + (CL) -  

( P Y = ( P ) + - ( P ) - ;  

(P)&)* = ~ ~ ~ ~ ” + * ~ ~ ~ + ~ ~ ~ ’ ’ * ~ C L ~ ” ~ ~ ~ + + ~ C L ~ ‘ ’ ~ ~ ~ ‘ ‘ 1  

and 

then generally 
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and 

For ordinary irreps of A, 

and hence 

while if /L = v then 

(p ) :  =~-[(p”)’i(/L)’’+(~)’~2] 

(F ) * (P ) -  = -(p)”21. 

and 

For the spin irreps of A, there are two distinct cases; (a) spin irreps labelled by 
partitions into unequal parts with one or more even; (b) spin irreps labelled by partitions 
into unequal odd parts. 

In case (a) we find 

( V ) f t (  Y)”’ = 0 

+ ) ’ 2  A[( ) ‘ + 2 + ( y ) f f ’ 2 ]  

(V)i(V)i = , [(v)’”Y)’’’2],  

(Y)”( Y)”‘ # 0 

(Y):’ = $[( Y)’i‘2 f 2( Y)’+( Y)”’ + ( Y)‘r’2] 

(v)!+(v)’= a[(v)‘”(v)’‘f2]. 

(p)’ t (V>”’ = (W)’yV)’+ = (p)”’(v)”’= 0 

and hence 

* - 4  &J 

and 

while in case (b) we find 

and hence 

and 

For p # Y we obtain 

and hence 

(wu>:(v>: = ( / L ) i ( Y ) k  = i(p)’t(Y)’t .  (34) 
We can now state the remaining three algorithms. The first deals with the cases 

(~)*(zJ)* and ( w ) + ( Y ) ~  for ordinary irreps of A,. 

Algorithm 5. 
(1) Evaluate ( p ) ( v )  for S ,  to give 

bL+) = g”,Y(P) 

and restrict the right-hand side to A,, using ( 1 5 ~ )  and (15b) .  
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(2) If ( p )  # (v) then 

(cL)*(v), = (p)*(v)T = i ( d ( v ) .  

(P )”* = g ;, ( P )  

g;, = 1  X ( P ) *  

( 3 )  If ( p )  = ( v )  then evaluate (pLfr2 for S,: 

where 
.n-k ( P )  

These results are then used in ( 3 1 a )  and (316)  together with the S, 4 A, branchingrules, 
noting that 

(/J)(F)’’ = *((@ )+ - (w ) - )  as = *I. 
The penultimate algorithm covers the cases ( p ) k ( v ) L  and ( p ) L ( v ) L .  

Algorithm 6. 
( 1 )  Evaluate ( , U > ‘ ~ ( V ) ’ ’  for S, using algorithm 4 of I to give 

(FL)’t(v)’f = g;JP) ’  

and restrict the right-hand side to A, using (15a) and (156) .  
(2) If p # v then use (34) .  
( 3 )  If p = v and p has unequal parts with one or more even, then evaluate (p)’” for 

S,, noting that 

(P)‘”’ = gP,,b) 

and restricting the right-hand side to A, using (15a) and (156) .  These results are then 
used in ( 3 3 a )  and (33b)  to complete the evaluation. 

( 4 )  If p = Y and p has unequal odd parts, evaluate (,U)’”’ for S, to give 

(CL )’“z = g P,, ( P )  

g;, = XhL) 

and restrict the right-hand side to A, using (15a) and (15b) .  Furthermore 

(P”“”’= *((CL)+-(p)-) as Xi:;’’ =*I, 

where 
in-k ( P )  

The final algorithm concerns the cases ( p ) * ( v ) :  and ( p ) * ( v ) k .  

Algorithm 7. 
(1) Evaluate ( p ) ( v ) ”  for S, using algorithm 3 of I to give 

(d(4’t = g;vY(Ps’+ 
and restrict the right-hand side to A, using ( 1 6 a )  and (16b) .  

(2 )  If ( v ) ‘ ~  has unequal parts with one or more even then 

(P)*(v) :  = ( P ) * ( V ) k  = a(g;dP)‘+). 

(p)”(v)’” = g;”(P)’+ 

( 3 )  If (v)” has unequal odd parts then evaluate 
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where 
i n - k  ( p ) ’ t  &” = X ( Y )  

xg” = x;t;” 
and restrict to A,. If 

then 

(p)t(v>”’ = ( p ) ” ( v ) ’ +  = ( -  1 ) ‘ ” - k ’ / 2  ((v>:-(v>’), 

X K  = - x ( Y ,  

while if 
( W ’ t  

then (p)(v)” ’  = - (p)” (v)”  = (-  1)‘“’’2 ( ( v )k - ( v )L ) .  The evaluation is completed by 
noting (29a) and (29b). 

The above algorithms are essentially free of the need to use character tables. The 
only ordinary characteristics required are of an especially simple form and may be 
readily evaluated, if required, using results already given in I (cf Littlewood 1950, p 70) 
together with equations (20)-(26) of this paper. The spin characteristics xi:;’ may be 
evaluated using the formulae of Morris (1962). No general result seems to be known in 
the simple sense of Littlewood’s theorem. 

The application of the above algorithms is best seen in the following examples for 
A6. First consider the A6 product [51]:[42]‘ using algorithm 6. Specialising to s6, we 
readily find that 

[ 5  l]’t[42]’t = 2[5 11’ + 4[42]’ + 4[412]’ + 2[32]t + 8[321]’. 

Use of (13a) and (13b) for S6.1A6 gives 

[51]’t[42]’i = 4[51]+8[42]+8[412]+4[3’]+8[321]++8[321]-. 

Finally, use of (34) results in 

[51]:[42]’= [51]+ 2[42]+ 2[412]+ [.32]+ 2[321]+ +2[321]-. 

Now consider the A6 product [51]:[51]’, again using algorithm 6 .  Using the results 

[51]”[51]” = [6]’+2[51]t+3[42]t+4[412]’+2[32]’+5[321]. 

of I we find 

Under S6 .1 Ah the right-hand side becomes 

2[6]+4[51]+6[42]+ 8[412]+4[32]+5[321]+ + 5[321]-. 

Furthermore 

[51]”’[51]”’ = [6] -[42] - [321]- [2’12] + [16] 

= 2[6] - 2[42] + [321]+ + [321]- 

and 

[51]’’[51]”’= -[321]++[321]-. 

Use of (33b) then yields 

[51]:[51]!. = [51] + 2[42]+2[41’]+[3’]+[321]+ +[321]- 
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while use of (33a) yields 

[511:[51]: = [6] + [Sl]+ [42] + 2[412] +[32] + [321]+ + 2[321]- 
and 

[51]'[51]1= [6] +[51] +[42]+2[412]+ [32]+ 2[321]+ + [321]-. 

7. Plethysms for ordinary and spin irreps of A, 

We now consider the resolving of the Kronecker squares of the ordinary and spin irreps 
of A, into their symmetric and antisymmetric terms. 

First we consider the ordinary irreps of A, that are not members of a conjugate pair. 
Since in this case ( p ) J ( p )  under S,JA,,, we can simply evaluate ( p j 0 { 2 }  and 
( p )  0 (22} and ( p )  0 {12} as for S,, using I, and then use equations (15a) and (15b) to 
make the S, 5 A, reductions. 

For example, since in S, we have (cf Butler and King 1973) 

(2) 0 { 1 '} = (1 2, + (1 ') + (2 1 ) + (3 l ) ,  

we have for S7 

[52] 0 { 1 z} = [5 1 2] + [4 1 '1 + [42 11 + [321] 

[52] 0 {12} = [512]+[413]*+[413]-+[421]+[321]. 

and hence for A7 

For the conjugate pairs (p)* of A, it is necessary to use difference characters and to 

(p)*  o ~ 2 ~ = t [ ( ~ L ) i O 1 2 ~ + ( ~ ) " ~ ~ 2 ~ + ( ~ ) + ( ~ l . ) ' f - ( ~ . ) : 1  (35a) 

(356) 

note that (cf Wybourne 1970) 

and 

The ordinary S, plethysms can be evaluated as in I (cf Butler and King 1973) and the 
products (p)'(pj" and (p ) :  as in the previous section. To evaluate (p j "0 (2}  and 
(p)"  0 {l'}, we note that if for A, 

( p  )* 0 (1 2} = i [ ( p  >+  0 (1 2} + (P >" 0 (1 2} + ( p  >+(CL >" - ( p  >:I. 

and 

Use of the above results readily leads to 

[321]+ @{12}=2[412]+[321]1- 
for As. 

For the spin irreps of A, we need to treat the two cases iz -- 2v and n = 2u + 1 
separately. The primary need is to evaluate the plethysms for the basic spin irrep (O)", 
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since any other plethysm involving spin irreps can be reduced to a plethysm involving 
the basic spin irreps and those involving ordinary irreps. 

In the case of AZ, the squares of the basic spin irreps are resolved by use of (86a) and 
(86b)  of I followed by use of the S ,  4 A, branching rules. If v = 0, 1 (mod 4) the basic 
spin irrep of Az, is orthogonal, while if v = 2, 3 (mod 4) it is symplectic. 

In the case of Az,+l difference characters for the basic spin irrep are used exactly as 
in (35a)-(35b),  leading to the conclusion that if v = 1 , 3  (mod 4), (0);  are complex while 
if v = 0 (mod 4), (O), are orthogonal and if v = 2 (mod 4), (0);  are symplectic. 

8. Classification of the A, irreps 

The classification of the irreps of A, as to their complex, orthogonal or symplectic 
characters follows immediately from the plethysm results just outlined. We simply 
quote the final results in the form of two algorithms. 

The first algorithm is for ordinary irreps of A,. 

Algorithm 8. 
(1) If [ A ]  = [I] in S ,  and (n  - k )  # 0 (mod 4) then [ A ] ,  of A, is complex. 
( 2 )  All other ordinary irreps of A, are real and orthogonal. 

In using the above algorithm k is the number of p i  = 2Ai - 2i + 1 with pi > 0. 
The second algorithm is for the spin irreps of A,. 

Algorithm 9. 
(1) If ( n  - k ) / 2  is odd then the spin irreps [ A l A 2 .  . . A k ] :  are complex. 
( 2 )  If n - k + 1 or ( n  - k ) / 2  are even then for n = 2 v  + 1 we have for the spin irreps 

v = 0 , 3  (mod 4) orthogonal, 

U =  1 , 2  (mod4) symplectic, 

while for n = 2v we have 

v = 0 , l  (mod 4) 

I, = 2 , 3  (mod 4) 

orthogonal, 

symplectic. 

9, Concluding remarks 

The algorithms developed herein allow any Kronecker product in A,, to be unam- 
biguously resolved, essentially without the need for extensive character tables. The 
reduced notation permits the results to be displayed in an n -independent manner and 
there should be little difficulty in implementing the algorithms as a computer program. 
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